
Analysis of Performance Regression Testing Data by
Transaction Profiles

Shadi Ghaith
School of Computer Science and Informatics

University College Dublin, Ireland
shadi.ghaith@ucdconnect.ie

ABSTRACT
Performance regression testing is an important step in the
software development lifecycle, especially for enterprise ap-
plications. Commonly the analysis of performance regres-
sion testing to find anomalies is carried out manually and
therefore can be error-prone, time consuming and sensi-
tive to the input load. In our research, we propose a new
technique that overcomes the above problems which helps
the performance testing teams to improve their process and
speeds up the entire software production process.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Measurement, Performance

Keywords
Application change, performance models, regression testing

1. INTRODUCTION
As part of the performance testing of enterprise applica-

tions, the testing teams need to detect if a new release per-
forms worse than previous releases, in which case a regres-
sion anomaly is to be declared [1]. To conduct performance
testing, the application is exposed to a field-like load, via
a load generator software, for an extended period of time
[2]. Accordingly, the Transactions Response Times (TRT)
and the system Resources Utilization (RU) are gathered and
analysed to look for performance anomalies [3].

The process of analysing performance data to look for
regressions faces the following two major difficulties:

Manual Process: Many industries still lack of an au-
tomated and portable solution to analyse performance data
looking for regressions. During a manual process, testing
engineers have to compare the TRT and RU of different re-
leases to capture bad increases. As a high volume of data can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

be produced by enterprise applications, this manual process
is error-prone and time consuming.

Load Dependency: When comparing TRT and RU be-
tween current and previous runs, both runs should be done
with the same load (number of users). Otherwise it will not
be possible to determine if the change is due to software
change or load variation. Yet, new performance testing runs
may need to be done with an increased workload to account
for varying field requirements [4]. In such a case, multiple
runs with different loads would be required which are time
and resource consuming.

The fact that performance testing is usually run as the last
step of an already delayed project leaves very little time to
run such tests, and to analyse them [1]. Hence, the lengthy
manual process is not suitable neither do the running of
multiple tests with various loads [5].

In this research work, we are targetting an automated
and generic solution to fix the two problems above. The
solution should be automated, independent of the load and
should not impose any new procedure, like new setup or per-
formance runs, to the performance testing process. Conse-
quently, our approach will speed up the performance testing
process and so will reduce the whole time and cost required
to produce the software and so reduce the time to market.

2. PROPOSED APPROACH

2.1 Queueing Network Model
Computer systems can be represented by a Queueing Net-

work Model (QNM) [6] as shown in Figure 1.

Figure 1: A Computer System Represented by a
Queueing Network Model.

Each node in the network represents one hardware re-
source such as CPU, Disk I/O or Network. Each node is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’13, July 15–20, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2159-4/13/07...$15.00
http://dx.doi.org/10.1145/2483760.2492399

370

Cop
y R

igh
ts

composed of a processing unit that will process the request
if no other request is being served or the request will have
to wait in the corresponding queue. Each request may visit
any of the resources one or more times and require a service
time to process the request (not including the time in the
queues). The total time required to serve the request on any
resource (execluding the time in the queues) during all the
visits is known as Service Demands [6].

The QNM shown in Figure 1 can be represented as shown
in Figure 2 if the BCMP theory [6] holds true. BCMP net-
work is a class of queueing network for which a product-form
equilibrium distribution exists. It is named after the authors
of the paper where the network was first described.

Figure 2: Representation of Computer System by
Applying the BCMP Hypotheses.

2.2 Transaction Profile
Transaction Profile (TP) is defined as a series of service de-

mands experienced by a transaction on all system resources
[7]. It is considered as the minimum bound of TRT or the
TRT when the request is the only one on the system. It can
be represented as shown in Figure 3.

Figure 3: Comparison of TP for “New Products”
Transaction Between Two Releases.

On one hand the TP represents the performance of the
transaction and may change only if the application changes
in a way that affects its performance. Such changes include
more visits to a certain resource (e.g. the hard disk), an
increase in the processing time of a certain resource, requir-
ing new resources such as introducing a call to the database
server. These changes affect the service demands and con-
sequently the TP. On the other hand load applied to the
system does not affect the TP which is defined as the time
required to process the transaction on the resources’ pro-
cessing unit excluding the time on the queue. Therefore in
this paper, we propose to use the TP concept in regression
testing to highlight performance regressions caused by ap-
plication changes and overcome the two challenges of the

performance regression testing, namely the manual process
and load dependency.

The central premise here is:-
An automated (or visual) comparison of the TPs between

the two releases will highlight the performance regressions
caused by application changes as opposed to those caused by
load variations.

This approach is depicted in Figure 3. It shows the TP
comparison of the “New Products” transaction between two
releases and shows that the new release contains a regression
in the application code that caused an increase of the CPU
utilization on the server machine.

2.3 TP Run Report
In order to utilise the TP approach in performance re-

gression testing, we designed the TP Run Report shown in
Figure 4.

Figure 4: TP Run Report.

The TP Report Summary shown in Figure 4a shows the
TPs which values in the new run deviates from their values
in the previous run by a pre-set threshold of 3%. Each of
these transactions corresponds to a potential performance
regression caused by an application change. To get more
information about each of these regressions, the user can
click on the link under any of those deviation values to get
the corresponding Detailed TP Graph shown in Figure 4b.
This gives detailed information about the per-component
contribution to the TP deviation.

2.4 Our Approach to Obtain TP
It is possible to measure the TP using a special setup

equipped by a load generator software such as JMeter [8].
We think that introducing such a step to the testing process
is considered as an extra overhead that makes the approach
less attractive. So we propose to calculate the TP using data
already produced by performance testing process (TRT and
RU) and the QNM of the testing system.

To explain our approach, we first describe the use of TP
in capacity management process [7] which is depicted in
Figure 5. At the left hand side we see the inputs in this
process which are the workload information and the service
demands. The service demands are measured as mentioned
above. The QNM in the centre of Figure 5 is generated to
represent the system for which the capacity is to be calcu-
lated. This model is solved via a variety of tools such as
Java Modelling Tool (JMT). Upon solving the model, the

371

Cop
y R

igh
ts

RU and TRT for the various resources/transactions are cal-
culated which forms the output of the capacity management
process. The input workload information and the QNM are
then varied to evaluate the system capacity.

Figure 5: Capacity Management Approach.

It can be noticed that the output parameters of the ca-
pacity management process (TRT and RU) are the data
available to the performance regression testing process. The
QNM is also available knowing the testing system. Also,
the workload information can be found from the load gen-
erator scripts. Given these data, we propose the reverse
process shown in Figure 6 to calculate the service demands
and hence the corresponding TPs.

Figure 6: Proposed Performance Regression Testing
Process.

The QNM can be reverse-solved using JMT (or similar
tools) by applying a search based approach as shown in Fig-
ure 7. The model is first solved with an initial TP value
(such as one from the previous run). The calculated TRT
and RU are then compared with the target ones (available
from performance testing). If they do not match the input
TP is adjusted and the QNM is solved again. This is con-
tinued until the calculated and target TRT, RU match in
which case the required TP is found.

2.5 System Overview
Figure 8 shows the entire proposed system. The perfor-

mance regression New Run Data is used as an input to the
process in addition to the TP of Previous Run(s). The
Load Generator data is parsed to find the transaction types,
TRT’s and transaction rates. The System Monitoring data

Figure 7: Reverse-solve Queueing Network Model.

is parsed to get the resources types and RU’s. The trans-
action and resources types are used to build the QNM as
shown in Figure 2. Then all of the TRT, RU and the trans-
action rates along with the QNM are used to calculate the
TPs of the various transactions as shown in Figure 6. Those
TPs are then compared to the TP Previous Run(s) ones to
generate the TP Run Report as shown in Figure 4.

3. METHODOLOGY AND CONTRIBUTION
Our research is conducted in the following four phases:
Validation of TP: In this phase we verified that the

TP provides an accurate representation of the performance
characteristics of the transactions of an open source web 2.0
application. This has been achieved by measuring the TP
via JMeter software [8] in a way similar to the techniques
used in the capacity management. From this experiment we
found that TP truly represents the performance characteris-
tics of the transaction and only changes when we introduce
performance overheads to the software code for particular
transactions. A detailed description of this work can be
found in our previous work [9].

Implementation: We implemented the solution shown
in Section 2.5. We parsed the data produced by the load
generator and monitoring tools to obtain various resources
and transactions information. We built the QNM of the
system from these data as shown in Figure 2 and reversely
solved the model to get the TP of the various transactions as
described in Section 2.4. We then automatically produced
the TP Run Report.

Evaluation: The solution was verified on a sample open
source web 2.0 application (JPetstore 6.0 [10]) by getting the
TP with and without an introduced common performance
bugs, for example missing indexes on database tables. We
found that the solution is capturing the performance regres-
sion anomalies with a precision of 80%. These results have
been included into a paper which is currently under review.

In addition to evaluating our approach on the open source
web 2.0 application (JPetstore 6.0 [10]), we plan to validate
the technique on a real large scale enterprise application. For
this application we have access to a repository of the infor-
mation for the various performance runs data over multiple
releases. The data includes performance regression anoma-
lies found by the current manual approach in each run. We
will generate the TP Run Report for each of these releases
and compare its results (performance regression anomalies)
to the real ones in the repository.

The results of this part will be published in short paper.

372

Cop
y R

igh
ts

Figure 8: Outline of Proposed System.

Enhancements: In this phase we plan to account for
software contentions in the QNM to simulate real life appli-
cations where the software resources, such as threads and
data sources, can form the bottleneck of the system. This
work will be published in a separate paper.

The contribution of our work is a new tool added to the
toolbox of performance testing engineers that helps them
identifying the performance regression anomalies.

4. RELATED WORK
Industry still adopts the manual approach to analyse per-

formance data looking for performance regression [1]. The
testing engineer will need to compare TRT, RU of the two re-
leases looking for an anomalous behaviour based on his/her
personal judgement. Such manual approach is error-prone
and time consuming unlike our proposed approach which
can be fully automated. Also, such manual approach re-
quires running both tests with the same load which is time
and resources consuming if the new release is expected to
run with a different field load. Our approach does not de-
pend on the load as the same TP can be inferred from test
runs with different loads.

One of the first approaches to automate the performance
regression testing process used statistical techniques [2].
They introduce the use of Statistical Process Control (SPC)
charts in performance regression testing. The previous run
data (baseline) is used to draw the Lower and Upper Control
Limits (UCL, LCL) and the Centre Line (CL). The new runs
data is then tested against those control limits and a viola-
tion ratio is calculated. If this violation ratio exceeds a cer-
tain pre-determined value a performance regression anomaly
is declared. Such an approach still requires running the new
release test with a similar load to the previous release. So
the same load issue of the manual approach above still exists
making our approach more favourable.

5. CONCLUSIONS
In this research work, we have proposed the usage of TP to

detect performance regression anomalies. We have verified
that a TP can realistically represent the transaction perfor-
mance characteristics. The TP only changes when the soft-

ware changes and is independent of variations in the load.
Then we have also provided an overview of our proposed
system along with implementation details. During the ex-
periment, our system has been tested on an open source
application and we plan to extend the evalation setup to a
real enterprise application. We also plan to study some more
aspects of the solution, mainly the software contentions.

6. ACKNOWLEDGMENTS
Supported, in part, by Science Foundation Ireland grant

10/CE/I1855.

7. REFERENCES
[1] J. Z. Ming. Automated analysis of load testing results. In

Proceedings of ISSTA, New York, NY, USA, 2010. ACM.
[2] T H. D. Nguyen. Using control charts for detecting and

understanding performance regressions in large software. In
Proceedings of ICST, Washington, DC, USA, 2012. IEEE
Computer Society.

[3] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky.
Validation, verification, and testing of computer software.
ACM Comput. Surv., 14(2):159–192, June 1982.

[4] F. M. Bereznay. Did something change? using statistical
techniques to interpret service and resource metrics. In
Proceedings of CMG. Computer Measurement Group, 2006.

[5] T. Gao, Y. Ge, and J. Ni G. Wu. A reactivity-based
framework of automated performance testing for web
applications. In Distributed Computing and Applications to
Business Engineering and Science (DCABES), 2010 Ninth
International Symposium on, pages 593–597. IEEE, 2010.

[6] J. Walrand. An introduction to queueing networks, volume
165. Prentice Hall Englewood Cliffs, NJ, 1988.

[7] L. Grinshpan. Solving Enterprise Applications
Performance Puzzles, pages 5–57. John Wiley and Sons,
Inc., Hoboken, New Jersey, 2012.

[8] The Apache Software Foundation. Apache jmeter.
http://jmeter.apache.org/, 2013.

[9] S. Ghaith, M. Wang, P. Perry, and J. Murphy.
Profile-based, load-independent anomaly detection and
analysis in performance regression testing of software
systems. In 17th European Conference on Software
Maintenance and Reengineering (CSMR’13), Italy, 2013.

[10] MyBatis. Jpetstore 6.
http://www.mybatis.org/spring/sample.html/, 2013.

373

Cop
y R

igh
ts

